пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ пїЅпїЅпїЅпїЅпїЅ
Слишком длинный поисковый запрос.
По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Перед тем как начать, почитайте материал про топологию сетей. Обнаружение соседей позволяет плоскости управления узнать о топологии сети, но как узнать информацию о достижимых пунктах назначения? На рисунке 8 показано, как маршрутизатор D узнает о хостах A, B и C? Существует два широких класса решений этой проблемы - реактивные и упреждающие, которые обсуждаются в следующих статьях. Реактивное изучение На рисунке 8 предположим, что хост A только что был включен, а сеть использует только динамическое обучение на основе передаваемого трафика данных. Как маршрутизатор D может узнать об этом недавно подключенном хосте? Одна из возможностей для A - просто начать отправлять пакеты. Например, если A вручную настроен на отправку всех пакетов по назначению, он не знает, как достичь к D, A должен отправить в хотя бы один пакет, чтобы D обнаружил его существование. Узнав A, D может кэшировать любую релевантную информацию на некоторое время - обычно до тех пор, пока A, кажется, отправляет трафик. Если A не отправляет трафик в течение некоторого времени, D может рассчитать запись для A в своем локальном кэше. Этот процесс обнаружения достижимости, основанный на фактическом потоке трафика, является реактивным открытием. С точки зрения сложности, реактивное обнаружение торгует оптимальным потоком трафика против информации, известной и потенциально переносимой в плоскости управления. Потребуется некоторое время, чтобы сработали механизмы реактивного обнаружения, то есть чтобы D узнал о существовании A, как только хост начнет посылать пакеты. Например, если хост F начинает посылать трафик в сторону а в тот момент, когда A включен, трафик может быть перенаправлен через сеть на D, но D не будет иметь информации, необходимой для пересылки трафика на канал, а следовательно, и на A. В течение времени между включением хоста A и обнаружением его существования пакеты будут отброшены-ситуация, которая будет казаться F в худшем случае сбоем сети и некоторым дополнительным джиттером (или, возможно, непредсказуемой реакцией по всей сети) в лучшем случае. Кэшированные записи со временем должны быть отключены. Обычно для этого требуется сбалансировать ряд факторов, включая размер кэша, объем кэшируемой информации об устройстве и частоту использования записи кэша в течение некоторого прошедшего периода времени. Время ожидания этой кэшированной информации и любой риск безопасности какого-либо другого устройства, использующего устаревшую информацию, являются основой для атаки. Например, если A перемещает свое соединение с D на E, информация, которую D узнал об A, останется в кэше D в течение некоторого времени. В течение этого времени, если другое устройство подключается к сети к D, оно может выдавать себя за A. Чем дольше действительна кэшированная информация, тем больше вероятность для выполнения этого типа атаки. Упреждающее изучение Некоторая информация о доступности может быть изучена заранее, что означает, что маршрутизатору не нужно ждать, пока подключенный хост начнет отправлять трафик, чтобы узнать об этом. Эта возможность имеет тенденцию быть важной в средах, где хосты могут быть очень мобильными; например, в структуре центра обработки данных, где виртуальные машины могут перемещаться между физическими устройствами, сохраняя свой адрес или другую идентифицирующую информацию, или в сетях, которые поддерживают беспроводные устройства, такие как мобильные телефоны. Здесь описаны четыре широко используемых способа упреждающего изучения информации о доступности: Протокол обнаружения соседей может выполняться между граничными сетевыми узлами (или устройствами) и подключенными хостами. Информация, полученная из такого протокола обнаружения соседей, может затем использоваться для введения информации о доступности в плоскость управления. Хотя протоколы обнаружения соседей широко используются, информация, полученная через эти протоколы, не используется широко для внедрения информации о доступности в плоскость управления. Информацию о доступности можно получить через конфигурацию устройства. Почти все сетевые устройства (например, маршрутизаторы) будут иметь доступные адреса, настроенные или обнаруженные на всех интерфейсах, обращенных к хосту. Затем сетевые устройства могут объявлять эти подключенные интерфейсы как достижимые места назначения. В этой ситуации доступным местом назначения является канал (или провод), сеть или подсеть, а не отдельные узлы. Это наиболее распространенный способ получения маршрутизаторами информации о доступности сетевого уровня. Хосты могут зарегистрироваться в службе идентификации. В некоторых системах служба (централизованная или распределенная) отслеживает, где подключены хосты, включая такую информацию, как маршрутизатор первого прыжка, через который должен быть отправлен трафик, чтобы достичь их, сопоставление имени с адресом, услуги, которые каждый хост способен предоставить, услуги, которые каждый хост ищет и/или использует, и другую информацию. Службы идентификации распространены, хотя они не всегда хорошо видны сетевым инженерам. Такие системы очень распространены в высокомобильных средах, таких как беспроводные сети, ориентированные на потребителя. Плоскость управления может извлекать информацию из системы управления адресами, если она развернута по всей сети. Однако это очень необычное решение. Большая часть взаимодействия между плоскостью управления и системами управления адресами будет осуществляться через локальную конфигурацию устройства; система управления адресами назначает адрес интерфейсу, а плоскость управления выбирает эту конфигурацию интерфейса для объявления в качестве достижимого назначения. Объявление достижимости и топология После изучения информации о топологии и доступности плоскость управления должна распространить эту информацию по сети. Хотя метод, используемый для объявления этой информации, в некоторой степени зависит от механизма, используемого для расчета путей без петель (поскольку какая информация требуется, где рассчитывать пути без петель, будет варьироваться в зависимости от того, как эти пути вычисляются), существуют некоторые общие проблемы и решения, которые будут применяться ко всем возможным системам. Основные проблемы заключаются в том, чтобы решить, когда объявлять о доступности и надежной передаче информации по сети. Решение, когда объявлять достижимость и топологию Когда плоскость управления должна объявлять информацию о топологии и доступности? Очевидным ответом может быть "когда это будет изучено", но очевидный ответ часто оказывается неправильным. Определение того, когда объявлять информацию, на самом деле включает в себя тщательный баланс между оптимальной производительностью сети и управлением объемом состояния плоскости управления. Рисунок 9 будет использован для иллюстрации. Предположим, хосты A и F отправляют данные друг другу почти постоянно, но B, G и H вообще не отправляют трафик в течение некоторого длительного периода. В этой ситуации возникают два очевидных вопроса: Хотя для маршрутизатора C может иметь смысл поддерживать информацию о доступности для B, почему D и E должны поддерживать эту информацию? Почему маршрутизатор E должен поддерживать информацию о доступности хоста A? С точки зрения сложности существует прямой компромисс между объемом информации, передаваемой и удерживаемой в плоскости управления, и способностью сети быстро принимать и пересылать трафик. Рассматривая первый вопрос, например, компромисс выглядит как способность C отправлять трафик из B в G при его получении по сравнению с C, поддерживающим меньше информации в своих таблицах пересылки, но требующимся для получения информации, необходимой для пересылки трафика через некоторый механизм при получении пакетов, которые должны быть переадресованы. Существует три общих решения этой проблемы. Проактивная плоскость управления: плоскость управления может проактивно обнаруживать топологию, вычислять набор путей без петель через сеть и объявлять информацию о достижимости. Упреждающее обнаружение топологии с реактивной достижимостью: плоскость управления может проактивно обнаруживать топологию и рассчитывать набор путей без петель. Однако плоскость управления может ждать, пока информация о доступности не потребуется для пересылки пакетов, прежде чем обнаруживать и / или объявлять о доступности. Реактивная плоскость управления: плоскость управления может реактивно обнаруживать топологию, вычислять набор путей без петель через сеть (обычно для каждого пункта назначения) и объявлять информацию о доступности. Если C изучает, сохраняет и распределяет информацию о доступности проактивно или в этой сети работает проактивная плоскость управления, то новые потоки трафика могут перенаправляться через сеть без каких-либо задержек. Если показанные устройства работают с реактивной плоскостью управления, C будет: Подождите, пока первый пакет в потоке не направится к G (к примеру) Откройте путь к G с помощью некоторого механизма Установите путь локально Начать пересылку трафика в сторону G Тот же процесс должен быть выполнен в D для трафика, перенаправляемого к A от G и F (помните, что потоки почти всегда двунаправленные). Пока плоскость управления изучает путь к месту назначения, трафик (почти всегда) отбрасывается, потому что сетевые устройства не имеют никакой информации о пересылке для этого достижимого места назначения (с точки зрения сетевого устройства достижимый пункт назначения не существует). Время, необходимое для обнаружения и создания правильной информации о пересылке, может составлять от нескольких сотен миллисекунд до нескольких секунд. В это время хост и приложения не будут знать, будет ли соединение в конечном итоге установлено, или если место назначения просто недоступно. Плоскости управления можно в целом разделить на: Проактивные системы объявляют информацию о доступности по всей сети до того, как она понадобится. Другими словами, проактивные плоскости управления хранят информацию о доступности для каждого пункта назначения, установленного на каждом сетевом устройстве, независимо от того, используется эта информация или нет. Проактивные системы увеличивают количество состояний, которые передаются и хранятся на уровне управления, чтобы сделать сеть более прозрачной для хостов или, скорее, более оптимальной для краткосрочных и чувствительных ко времени потоков. Реактивные системы ждут, пока информация о пересылке не потребуется для ее получения, или, скорее, они реагируют на события в плоскости данных для создания информации плоскости управления. Реактивные системы уменьшают количество состояний, передаваемых на уровне управления, делая сеть менее отзывчивой к приложениям и менее оптимальной для кратковременных или чувствительных ко времени потоков. Как и все компромиссы в сетевой инженерии, описанные здесь два варианта, не являются исключительными. Можно реализовать плоскость управления, содержащую некоторые проактивные и некоторые реактивные элементы. Например, можно построить плоскость управления, которая имеет минимальные объемы информации о доступности, описывающей довольно неоптимальные пути через сеть, но которая может обнаруживать более оптимальные пути, если обнаруживается более длительный или чувствительный к качеству обслуживания поток. Что почитать дальше? Советуем материал про реактивное и упреждающее распределение достижимости в сетях.
img
В последние годы рынок программного обеспечения прогрессирует ударными темпами. Чтобы удержаться на плаву, компании-разработчики программного обеспечения постоянно разрабатывают новые решения и совершенствуют уже существующее программное обеспечение. И если в первом случае анализируются желания, озвучиваемые пользователями, то во втором более эффективным методом сбора данных оказывается телеметрия. Что же это такое? Говоря по-простому, сетевая телеметрия — это процесс автоматизированного сбора данных, их накопление и передача для дальнейшего анализа. Если говорить о программном обеспечении, то анализ проводится разработчиками софта с целью оптимизации существующих программ, либо разработки и внедрения новых решений. Телеметрия в сети осуществляется посредством сбора данных с использованием сетевого протокола NetFlow или его аналогов. Зачем же нужен NetFlow? Сетевой протокол NetFlow был разработан в конце прошлого века компанией Cisco. Изначально он использовался как программа-распределитель пакетов данных для оптимизации работы маршрутизаторов, однако с течением времени она была заменена на более эффективную программу. Тем не менее, такой функционал, как сбор полезной статистики по использованию сетевого трафика и поныне оставляет Netflow актуальным. Правда, специализация этого протокола уже не соответствует исходной. Тем не менее, Netflow обладает функционалом, который невозможно реализовать, применяя альтернативные сетевые технологии. Система постоянного наблюдения за работой сетевых приложений и действиями пользователей; Сбор и учет информации об использовании сетевого трафика; Анализ и планирование развития сети; Распределение и управление сетевым трафиком; Изучение вопросов сетевой безопасности; Хранение собранных посредством телеметрии данных и их итоговый анализ; Хотя уже существуют программные решения, обладающие схожим функционалом, решение от компании Cisco до сих пор остается одним из лучших в этой сфере. Кстати, теперь это решение называется Cisco Stealthwatch и на 95% обладает функционалом для решения исключительно задач, связанных с информационной безопасностью. Отметим, что технологию сбора данных посредством NetFlow поддерживают не все роутеры или коммутаторы. Если Ваше устройство имеет поддержку данного протокола, то оно будет замерять проходящий трафик и передавать собранные данные в NetFlow-коллектор для последующей обработки. Передача будет осуществляться в формате датаграмм протокола UDP или пакетов протокола SCTP, поэтому на скорость работы интернета существенным образом это не повлияет. В настоящее время решения NetFlow (как и многих других приложений) подразделяются на три типа: Базовые технологии. Отличаются низкой ценой и довольно скудным функционалом анализа сетевого трафика. Тем не менее, для большинства пользователей или же для изучения технологии этого вполне достаточно «Продвинутые» корпоративные варианты. Здесь базовый функционал дополнен более широким набором инструментов для предоставления расширенной отчетности анализа данных. Также эти решения содержат готовые модели оптимизации для разных сетевых устройств. «Флагманские» корпоративные решения. Отличаются наивысшей ценой, однако при этом и наиболее широким функционалом, а также позволяют осуществлять мониторинг информационной безопасности в крупных организациях. «А как же быть с приватностью? Ведь сбор данных ставит под угрозу частную жизнь пользователей, тайну переписки, личные сообщения и прочее» - спросит беспокойный читатель. Согласно политике приватности компании Cisco, персональные данные пользователей остаются в полной безопасности. Посредством телеметрии NetFlow анализируется исключительно передача сетевого трафика, не угрожая приватности пользователей. Примеры решений Также приведем несколько самых популярных сетевых анализаторов, работающих под протоколом NetFlow: Solarwinds NetFlow Traffic Analyzer – мощный инструмент для анализа динамики трафика в сети. Программа осуществляет сбор, накопление и анализ данных, выводя их в удобном для пользователя формате. При этом можно проанализировать поведение трафика за определенные временные промежутки. Для ознакомления на сайте производителя доступна бесплатная 30-дневная версия Flowmon – программа, предоставляющая комплекс инструментов для изучения пропускной способности сети, нагрузки на сеть в определенные периоды времени, а также обеспечения безопасности сети от DDOS-атак PRTG Network Monitor - универсальное решение для сбора, хранения и обработки данных о поведении сети. В отличие от других подобных программ, данный инструмент работает на основе сенсоров – логических единиц, отвечающих за сбор данных по определенным аспектам изучаемого устройства. ManageEngine NetFlow Analyzer – схожая с остальными по функционалу программа. Её выделяют из ряда других такие возможности, как гибкая настройка аналитики, а так же возможность мониторить поведение сети из любого места, благодаря приложению для телефона. Как можно заметить, все вышеуказанные программы не только обладают схожим базовым функционалом, но и конкурируют между собой, продумывая и внедряя новые технические решения. Выбор, какой из нескольких десятков программ начать пользоваться – целиком и полностью дело конечного пользователя.
img
Уровни выполнения (runlevel) Linux можно представить, как режим, в котором запускается система. Каждый из этих режимов обладают своими процессами, которые включены или выключены в зависимости от запущенного уровня выполнения. С момента загрузки Linux выполняется в одном из режимов, нельзя запускать систему в нескольких режимах, но есть возможность переключаться между уровнями во время работы на компьютере. Например, при запуске системы с графическим интерфейсом выполняется один уровень, а если запускать систему в режиме командной строки выполнится другой. Это происходит потому, что режиму GUI нужны доступы к тем процессам, в которых командная строка не нуждается. В зависимости от того, какие службы нужно включить, а какие выключить система меняет уровни выполнения. Почему важны уровни доступа Вы можете годами пользоваться системой Linux, даже не понимая разницу между уровнями доступа, так как эта опция не является часто конфигурируемой. Тем не менее уровни выполнения Linux дают администраторам повышенный контроль над системой. Режим, в котором работает система, может быть изменен (как это сделать будет показано далее), как и сервисы, которые выполняются в этом режиме. Это позволяет нам полностью контролировать, к каким службам система будет иметь доступ в данный момент. Сколько уровней выполнения существует? В системе Linux есть семь уровней выполнения, которые нумеруются от 0 до 6. Разные дистрибутивы по-разному используют уровни выполнения, так что очень сложно составить список задач, которые выполняет конкретный уровень. Зато вы сами можете посмотреть какие задачи выполняют уровни доступа вашего дистрибутива. Ниже приведён список уровней выполнения и основных задач, выполняемых ими. Runlevel 0 завершает работу системы Runlevel 1 однопользовательский режим работы. Чаще всего используется в целях обслуживания и выполнения других административных задач. Это уровень также может называться runlevel S, где S означает single-user. Если вам когда-то приходилось сбрасывать пароль на Linux, то вы вероятно уже пользовались этим режимом. Runlevel 2 многопользовательский режим работы без поддержки сетевых служб (демонов). Runlevel 3 многопользовательский режим с поддержкой сети, но без графического интерфейса. Чаще всего серверные версии Linux работают именно на этом уровне выполнения. Runlevel 4 не используется. Пользователь может настраивать этот уровень исходя из его целей. О том, как это сделать также будет рассказано далее. Runlevel 5 этот режим схож с уровнем 3, но тут еще запускается графический интерфейс. В этом режиме работают десктопные версии Linux. Runlevel 6 этот уровень перезагружает систему. Как узнать текущий режим работы? Чтобы узнать текущий уровень выполнения достаточно ввести команду runlevel в командной строке. На выводе этой команды две цифры. Первая указывает на предыдущий режим работы, а второй на текущий. На скриншоте вместо первой цифры указана буква N, что значит система изначально запускалась и работает в 5 режиме, о чём говорит вторая цифра 5. Как менять уровень выполнения? Текущий уровень выполнения можно менять командой "telinit". Ниже приведён пример смены уровня выполнения на CentOS. $ telinit 3 Следует отметить, что эта операция требует прав привилегированного пользователя. Имейте ввиду, что на системах семейства Debian уровни выполнения работают по-другому. Например, Ubuntu в режиме командой строки запускается с уровнем выполнения 5. После выполнения команды указанной выше, ваш экран может стать пустым. Это потому, что вы остались на пустом терминале, чтобы вернутся на рабочий терминал нажмите комбинацию клавиш Alt+F1. Если запустить команду runlevel еще раз, то мы увидим, что текущий уровень выполнения 3, а предыдущий 5. Linux system против runlevels В последние годы systemd сменила многолетнюю систему уровней доступа (System V init). Фактически он работает по тому же принципу, но использует новые команды, которые в целом используют "runlevel" как "target". Runlevel 0 = poweroff.target (runlevel0.target) Runlevel 1 = rescue.target (runlevel1.target) Runlevel 2 = multi-user.target (runlevel2.target) Runlevel 3 = multi-user.target (runlevel3.target) Runlevel 4 = multi-user.target (runlevel4.target) Runlevel 5 = graphical.target (runlevel5.target) Runlevel 6 = reboot.target (runlevel6.target) По ходу статьи мы изучим systemd и его команды. Как поменять уровень выполнения по умолчанию? Может быть очень много причин для того чтобы загружаться с другим уровнем выполнения. Например, системные администраторы в основном используют систему в режиме командой строки, включая графический интерфейс только в случае необходимости. Именно для таких случаев нужно убедиться, что уровень выполнения по умолчанию 3, а не 5. В прошлом для этого приходилось редактировать файл /etc/inittab. Вы еще можете увидеть эту практику на некоторых системах. Если вы работаете с ОС, которые давно не обновляются до новых версий, этот путь будет приемлемым. $ vi /etc/inittab На скриншоте уровнем выполнения по умолчанию установлен 5. Но большинство систем Linux отказались от файла /etc/inittab в пользу systemd targets и мы рассмотрим разницу между ними по ходу статьи. Вы можете не найти в своей системе файл /etc/inittab или же файл inittab выведет вам сообщение с советом использовать systemd. Чтобы проверить текущий уровень выполнения по умолчанию введите команду $ systemctl get-default Система вернула нам "graphical.target". Как вы наверное и догадались, это не что иное, как уровень выполнения 5. Чтобы просмотреть остальные "target" и уровни выполнения, ассоциированные с ними введите команду: $ ls -l /lib/systemd/system/runlevel* Символьные ссылки указывают на то, что systemd работают так же как и runlevel. Итак, что необходимо сделать, чтобы поменять уровень выполнения по умолчанию? Для этого достаточно создать новую символьную ссылку на интересующую нас цель systemd. $ ln -sf /lib/systemd/system/runlevel3.target /etc/systemd/system/default.target Данной командой мы поменяли режим запуска системы по умолчанию с уровня выполнения 5, на 3 и при следующей загрузке система выполнить именно этот уровень. Ключ f указывает на то, что перед созданием новой символьной ссылки целевой файл должен быть удален. Это же самое могли бы сделать командой rm. Чтобы проверит успешно ли применились изменения достаточно повторно ввести команду "systemctl get-default". Разница между уровнями выполнения 3 и 5 Самыми часто используемыми уровнями выполнения являются уровни 3 и 5. В целом их разница сводится к тому, что 3 это режим командной строки, а 5 режим графического интерфейса. Конечно, не во всех дистрибутивах выполняется это условие или же ваша система может быть сконфигурирована так, что эти два уровня имеют больше отличий. Дальше мы рассмотрим, как узнать, какие процессы задействованы для того или иного уровня. Просмотр список служб конкретного уровня Чтобы просмотреть список служб, доступных для каждого уровня до недавнего времени использовалась команда "chkconfig -list". Если у вас стоит одна из последний версий, системы, то вероятно вы получите ошибку, как на скриншоте ниже: Чтобы проверить, какие службы запускаются во время загрузки системы в режиме графического интерфейса (уровень выполнения 5 для семейства RedHat), нужно запустить следующую команду: $ systemctl list-dependencies graphical.target Чтобы просмотреть список доступных служб другого уровня, просто замените "graphical.target" на нужную. Под каким уровнем работает процесс Если нужно посмотреть по каким уровнем выполнения запущена та или иная служба, можно ввести команду: $ systemctl show -p WantedBy [name of service] Например, чтобы посмотреть какой runlevel использует служба sshd, введите команду: $ systemctl show -p WantedBy sshd.service Судя по скриншоту выше, служба sshd запушена под уровнями 2,3 и 4 (multi-user.target) Меняем уровень запуска приложения Как было показано выше, демон SSH запущена только на уровнях 2-4. Что если нам нужно, чтобы он работал ещё и на уровне 5? Для этого нужно ввести следующее изменение: $ systemctl enable sshd.service Проблемы безопасности с уровнями доступа Linux Как было сказано ранее, уровни доступа дают администраторам возможность управлять службами, которые работают в определённых случаях. Такая возможность детального контроля повышает безопасность системы, так как системный администратор может быть уверен, что не запущена ни одна сторонняя служба. Проблема возникает, когда администратор не знает точно какие службы запущены и, следовательно, не может принять меры по уменьшению площади атаки. Используя методы из данного руководства, вы можете настроить уровень выполнения по умолчанию и контролировать запущенные приложения. Это, конечно, не уменьшит нагрузку на системные ресурсы, но сервер будет более защищен. Помните, что надо запускать тот уровень, который вам необходим. Нет смысла запускать систему в графическом режиме, если планируете работать там режиме командной строки. Каждый уровень выполнения запускает новые службы, большинство из которых работают в фоновом режиме, и вы можете забыть обезопасить их. Какой уровень выполнения выбрать? Выбор режима запуска системы полностью зависит от ситуации. В основном используется один из двух режимов: либо runlevel 3, либо runlevel 5. Если вам удобно работать с командной строкой и вам не нужен графический интерфейс, то уровень выполнения 3 самый подходящий. Это предотвратит запуск ненужных служб. С другой стороны, если вам хочется работать в десктопном режиме или же вам нужна графическая оболочка для работы какой-то программы, то выберите уровень 5. Если же нужно запустить систему в режиме обслуживания, то выбирайте уровень 1. В этом режиме в системе будете только вы, так как сетевые службы даже не запущены. Это позволит выполнить обслуживания без сбоя. В редких случаях появляется необходимость использовать уровень выполнения 4. Это может быть только в том случае, если администратору нужен уровень выполнения для особых задач. Как вы уже, наверное, заметили, мы не может запускать систему с уровнем 0 и 6, но можно переключаться на них если нужно выключить или перезагрузить систему. Но в этом нет особой необходимости, так как есть команды, которые выполняют эти операции. Можно ли создано новый уровень на Linux? Так как система Linux это система бесконечных возможностей, то и создание нового уровня не исключение. Но очень маловероятно, что вам когда-нибудь понадобится это. Но если вы все-таки решили создать новый уровень, то следует начать с копирования существующего уровня и изменения её под свои задачи. Целевые уровни расположены по следующему пути: /usr/lib/systemd/system Если хотите создать свой уровень на основе 5-го уровня выполнения, скопируйте искомую директорию в новую: $ cp /usr/lib/systemd/system/graphical.target /usr/lib/systemd/system/mynew.target Затем в новой директории создайте поддиректорую "wants": $ mkdir /etc/systemd/system/mynew.target.wants Затем просто создайте символьную ссылку на дополнительные службы в директории /usr/lib/systemd/system, которые необходимы вашему уровню.
ЗИМНИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59