пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ пїЅ пїЅпїЅпїЅпїЅпїЅпїЅпїЅпїЅ
По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие
наши статьи:
Привет! В сегодняшней статье хотим рассказать о том, как настроить DHCP сервер для организации офисной IP-телефонии. Этой темы мы уже косвенно касались в нашей прошлой статье, а сегодня покажем всё на практике. Мы будем использовать роутер MikroTik RB951Ui-2HnD с операционной системой MikroTik RouterOS 6.35.4, но для этих целей подойдёт абсолютно любое устройство, поддерживающее данный сервис.
/p>
Настройка DHCP
Итак, открываем WinBox и подключаемся к нашему роутеру, далее переходим во вкладку IP → Pool → +:
Открывается следующее окно:
Обозначим диапазон IP адресов, которые будем раздавать подключаемым телефонам, например, 192.168.1.10 – 192.168.1.100.
Теперь настроим непосредственно DHCP-сервер, который будет раздавать адреса из созданного пула телефонам, для этого переходим по пути IP → DHCP Server → DHCP → +:
Открывается следующее окно:
В данном окне необходимо указать интерфейс, с которого наш сервер будет раздавать адреса (в нашем случае – ether1), Lease Time - время, на которое будет выдан адрес (в нашем случае – 1 день) и, собственно, пул адресов (Address Pool), которые могут быть выданы (в нашем случае – dhcp, который мы создали ранее)
Option 66
А теперь самое важное, для чего, всё это затевалось - Опция 66. Опция 66 (option 66) – это аналог проприетарной опции 150 (option 150), разработанной компанией Cisco для автоматического обновления прошивок и конфигурации (Auto Provisioning) телефонов Cisco IP Phone. Данная опция содержит в себе адрес TFTP сервера, на который должен обратиться телефон, чтобы скачать прошивку и файл с конфигурацией, как только подключается к сети. Единственным различием между опцией 150 и 66, является то, что благодаря опции 150 можно указывать IP адреса для нескольких TFTP серверов, а в опции 66 можно указать только один адрес. Опция 66 является открытым стандартом IEEE, который поддерживается большинством производителей роутеров и VoIP-оборудования. Описывается в RFC 2132.
Давайте её настроим, для этого переходим на вкладку Options → + и видим следующее окно:
Важно! Прежде чем вводить IP адрес TFTP сервера в поле Value, проверьте версию RouterOS, от этого будет зависеть синтаксис данной настройки.
Для версий с 6.0 -6.7, значение IP адреса нужно вводить, используя одинарные ковычки - ’192.168.1.1’
Для версий от 6.8, значение IP адреса нужно вводить, используя следующий синтаксис - s’192.168.1.1’
Здесь:
Name - Название новой опции
Code - Код опции по RFC 2132
Value - IP адрес TFTP сервера, на котором лежат прошивки для телефонов
Raw Value - 16-ричная интерпретация IP адреса TFTP сервера, рассчитывается автоматически после нажатия кнопки Apply
Готово, теперь переходим на вкладку Network и указываем только что настроенную опцию 66 как показано ниже:
Итак, теперь, как только мы подключим новый телефон в сеть, он получит по DHCP адрес из пула 192.168.1.10- 100, а также адрес TFTP сервера в опции 66, на котором для него лежит конфигурационный файл и актуальная версия прошивки.
В многоуровневой и/или модульной системе должен быть какой-то способ связать услуги или объекты на одном уровне с услугами и объектами на другом. Рисунок 1 иллюстрирует проблему.
На рисунке 1
Как A, D и E могут определить IP-адрес, который они должны использовать для своих интерфейсов?
Как D может обнаружить Media Access Control адрес (MAC), физический адрес или адрес протокола нижнего уровня, который он должен использовать для отправки пакетов на E?
Как может client1.example, работающий на D, обнаружить IP-адрес, который он должен использовать для доступа к www.service1.example?
Как D и E могут узнать, на какой адрес они должны отправлять трафик, если они не на одном и том же канале или в одном и том же сегменте?
Каждая из этих проблем представляет собой отдельную часть interlayer discovery. Хотя эти проблемы могут показаться не связанными друг с другом, на самом деле они представляют собой один и тот же набор проблем с узким набором доступных решений на разных уровнях сети или стеках протоколов. В лекции будет рассмотрен ряд возможных решений этих проблем, включая примеры каждого решения.
Основная причина, по которой проблемное пространство interlayer discovery кажется большим набором не связанных между собой проблем, а не одной проблемой, состоит в том, что оно распределено по множеству различных уровней; каждый набор уровней в стеке сетевых протоколов должен иметь возможность обнаруживать, какая услуга или объект на «этом» уровне относится к какой услуге или объекту на каком-либо более низком уровне. Другой способ описать этот набор проблем - это возможность сопоставить идентификатор на одном уровне с идентификатором на другом уровне - сопоставление идентификаторов. Поскольку в наиболее широко применяемых стеках протоколов есть по крайней мере три пары протоколов , необходимо развернуть широкий спектр решений для решения одного и того же набора проблем межуровневого обнаружения в разных местах. Два определения будут полезны для понимания диапазона решений и фактически развернутых протоколов и систем в этой области:
Идентификатор - это набор цифр или букв (например, строка), которые однозначно идентифицируют объект.
Устройство, реальное или виртуальное, которое с точки зрения сети кажется единым местом назначения, будет называться объектом при рассмотрении общих проблем и решений, а также хостами или услугами при рассмотрении конкретных решений.
Есть четыре различных способа решить проблемы обнаружения interlayer discovery и адресации:
Использование известных и/или настроенных вручную идентификаторов
Хранение информации в базе данных сопоставления, к которой службы могут получить доступ для сопоставления различных типов идентификаторов.
Объявление сопоставления между двумя идентификаторами в протоколе
Вычисление одного вида идентификатора из другого
Эти решения относятся не только к обнаружению, но и к присвоению идентификатора. Когда хост подключается к сети или служба запускается, он должен каким-то образом определить, как он должен идентифицировать себя - например, какой адрес Интернет-протокола версии 6 (IPv6) он должен использовать при подключении к локальной сети. Доступные решения этой проблемы - это те же четыре решения.
Хорошо известные и/или настраиваемые вручную идентификаторы
Выбор решения часто зависит от объема идентификаторов, количества идентификаторов, которые необходимо назначить, и скорости изменения идентификаторов. Если:
Идентификаторы широко используются, особенно в реализациях протоколов, и сеть просто не будет работать без согласования межуровневых сопоставлений и ...
Количество сопоставлений между идентификаторами относительно невелико, и ...
Идентификаторы, как правило, стабильны - в частности, они никогда не изменяются таким образом, чтобы существующие развернутые реализации были изменены, чтобы сеть могла продолжать функционировать, а затем ...
Самым простым решением является ведение какой-либо таблицы сопоставления вручную.
Например, протокол управления передачей (TCP) поддерживает ряд транспортных протоколов более высокого уровня. Проблема соотнесения отдельных переносимых протоколов с номерами портов является глобальной проблемой межуровневого обнаружения: каждая реализация TCP, развернутая в реальной сети, должна иметь возможность согласовать, какие службы доступны на определенных номерах портов, чтобы сеть могла «работать». Однако диапазон межуровневых сопоставлений очень невелик, несколько тысяч номеров портов необходимо сопоставить службам, и довольно статичен (новые протоколы или службы добавляются не часто). Таким образом, эту конкретную проблему легко решить с помощью таблицы сопоставления, управляемой вручную.
Таблица сопоставления для номеров портов TCP поддерживается Internet Assigned Numbers Authority (IANA) по указанию Engineering Task Force (IETF); Часть этой таблицы показана на рисунке 2. На рисунке 2 службе echo назначен порт 7; эта служба используется для обеспечения функциональности ping.
База данных и протокол сопоставления
Если число записей в таблице становится достаточно большим, число людей, участвующих в обслуживании таблицы, становится достаточно большим или информация достаточно динамична, чтобы ее нужно было изучать во время сопоставления, а не при развертывании программного обеспечения, имеет смысл создавать и распространять базу данных динамически. Такая система должна включать протоколы синхронизации разделов базы данных для представления согласованного представления внешним запросам, а также протоколы, которые хосты и службы могут использовать для запроса базы данных с одним идентификатором, чтобы обнаружить соответствующий идентификатор из другого уровня сети.
Базы данных динамического сопоставления могут принимать входные данные с помощью ручной настройки или автоматизированных процессов (таких как процесс обнаружения, который собирает информацию о состоянии сети и сохраняет полученную информацию в динамической базе данных). Они также могут быть распределенными, что означает, что копии или части базы данных хранятся на нескольких различных хостах или серверах, или централизованными, что означает, что база данных хранится на небольшом количестве хостов или серверов.
Система доменных имен (DNS) описывается как пример службы сопоставления идентификаторов, основанной на динамической распределенной базе данных. Протокол динамической конфигурации хоста (DHCP) описан в качестве примера аналогичной системы, используемой в основном для назначения адресов.
Сопоставления идентификаторов объявления в протоколе
Если объем проблемы сопоставления может быть ограничен, но количество пар идентификаторов велико или может быстро меняться, то создание единого протокола, который позволяет объектам запрашивать информацию сопоставления напрямую от устройства, может быть оптимальным решением. Например, на рисунке 1 D может напрямую спросить E, какой у него локальный MAC-адрес (или физический).
Интернет протокол IPv4 Address Resolution Protocol (ARP) является хорошим примером такого рода решений, как и протокол IPv6 Neighbor Discovery (ND).
Вычисление одного идентификатора из другого
В некоторых случаях можно вычислить адрес или идентификатор на одном уровне из адреса или идентификатора на другом уровне. Немногие системы используют этот метод для сопоставления адресов; большинство систем, использующих этот метод, делают это для того, чтобы назначить адрес. Одним из примеров такого типа систем является Stateless Address Autoconfiguration (SLAAC), протокол IPv6, который хосты могут использовать для определения того, какой IPv6-адрес должен быть назначен интерфейсу.
Другим примером использования адреса нижнего уровня для вычисления адреса верхнего уровня является формирование адресов конечных систем в наборе протоколов International Organization for Standardization (ISO), таких как Intermediate System to Intermediate System (IS-IS).
Временные списки доступа ACL (Time Based Access-List) – это такие ACL, которые позволяют ограничивать или разрешать доступ до ресурсов в зависимости от времени. Например, запретить выход в интернет для компьютеров в нерабочее время.
Настройка на оборудовании Cisco
Про настройку стандартных ACL можно прочесть тут;
Про настройку расширенных ACL можно прочесть здесь;
Для реализации списков доступа, основанных на времени, существует несколько простых шагов:
Определить временной диапазон когда должен действовать ACL
Определить что должен ограничивать и разрешать ACL и применить к нему временной диапазон
Применить ACL к нужному интерфейсу
Сначала на маршрутизаторе создадим временной диапазон, используя команду time-range [имя_диапазона] . Затем определяем, будет он периодическим (задаем периоды работы) или абсолютным (задаем начало и конец). Если он будет периодическим, то мы используем команду periodic [день_недели][час:минуты]to[день_недели][час:минуты] (также можно использовать аргументы weekend - Суббота и Воскресенье, weekdays - с Понедельника по Пятницу, и daily - Каждый день), а если абсолютным, то используем команду absolute [дата_начала] [дата_конца] .
Пример создания периодического временного диапазона:
Router#conf t
Router(config)#time-range weekends
Router(config)#periodic weekend 08:00 to 22:00
Либо можно указать отдельные дни:
Router#conf t
Router(config)#time-range mwf
Router(config)#periodic Monday Wendsday Friday 08:00 to 16:00
Пример создания абсолютного временного диапазона:
Router#conf t
Router(config)#time-range cisco
Router(config)#absolute start 00:00 1 May 2018 end 00:00 1 April 2019
Далее создаем ACL и указываем в нем созданный диапазон при помощи аргумента time-range [название]
Router(config)#ip access-list extended deny-weekends
Router(config)#deny tcp any any eq 80 time-range weekens
И после этого применим этот лист на интерфейсах:
Router(config)#interface fa0/1
Router(config)#ip access-group deny-weekends out
После этого лист контроля доступа будет применяться в зависимости от времени, выставленном на маршрутизаторе, поэтому очень важно, чтобы оно было выставлено верно. Посмотреть созданные временные диапазоны можно при помощи команды show time-range.
