По вашему запросу ничего не найдено :(
Убедитесь, что запрос написан правильно, или посмотрите другие наши статьи:
img
Управление дисковым пространством на сервере Linux - важная задача. Например, приложения диспетчера пакетов уведомят вас, сколько места на диске потребуется для установки. Чтобы эта информация была значимой, вы должны знать, сколько места доступно в вашей системе. В этом руководстве вы узнаете, как использовать команду df для проверки дискового пространства в Linux и команду du для отображения использования дискового пространства файловой системы. Проверить дисковое пространство Linux с помощью команды df Вы можете проверить свое дисковое пространство, просто открыв окно терминала и введя следующее: df Команда df означает освобождение диска и показывает количество места, занимаемого различными дисками. По умолчанию df отображает значения в блоках размером 1 килобайт. Отображение использования в мегабайтах и гигабайтах Вы можете отобразить использование диска в более удобочитаемом формате, добавив параметр –h: df –h Здесь отображается размер в килобайтах (K), мегабайтах (M) и гигабайтах (G). Понимание формата вывода Команда df выводит несколько столбцов: Filesystem Size Used Avail Use% Mounted on udev 210M 0 210M 0% /dev tmpfs 49M 1004K 48M 3% /run /dev/sda2 7.9G 4.3G 3.2G 58% / В вашем выводе может быть больше записей. Filesystem - это имя каждого конкретного диска. Сюда входят физические жесткие диски, логические (разделенные) диски, а также виртуальные или временные диски. Size - размер файловой системы. Used - объем пространства, используемого в каждой файловой системе. Avail - количество неиспользуемого (свободного) места в файловой системе. Use% - показывает процент использованного диска. Mounted on - это каталог, в котором расположена файловая система. Это также иногда называют точкой монтирования. Список файловых систем включает ваш физический жесткий диск, а также виртуальные жесткие диски: /dev/sda2 - это ваш физический жесткий диск. Он может быть указан как /sda1, /sda0 или у вас может быть даже несколько. /dev означает устройство. udev - это виртуальный каталог для каталога /dev. Это часть операционной системы Linux. tmpfs - их может быть несколько. Они используются /run и другими процессами Linux в качестве временных файловых систем для запуска операционной системы. Например, tmpfs /run/lock используется для создания файлов блокировки. Это файлы, которые не позволяют нескольким пользователям изменять один и тот же файл одновременно. Отобразить определенную файловую систему Команду df можно использовать для отображения определенной файловой системы: df –h /dev/sda2 Вы также можете использовать обратную косую черту: df –h / Это отображает использование вашего основного жесткого диска. Используйте точку монтирования (в столбце Mounted on), чтобы указать диск, который нужно проверить. Примечание. Команда df предназначена только для полной файловой системы. Даже если вы укажете отдельный каталог, df будет читать пространство всего диска. Отображение файловых систем по типу Чтобы перечислить все файловые системы по типу, используйте команду: df –ht ext4 Здесь перечислены диски с типом ext4 в удобочитаемом формате. Отображение размера в 1000 вместо 1024 Вы можете отображать использование диска в единицах 1000 вместо 1024: df –H Это может устранить путаницу в технологии хранения. Производители жестких дисков продают жесткие диски размером 1000 байт = 1 килобайт. Однако операционные системы делят это пространство так, что 1024 байта = 1 килобайт. Из-за этого на 1000-гигабайтном жестком диске остается примерно 930 гигабайт полезной памяти. Проверить дисковое пространство Linux с помощью команды du Команда du отображает использование диска. Этот инструмент может отображать использование диска для отдельных каталогов в Linux, давая вам более детальное представление об использовании вашего диска. Используйте его для отображения количества места, используемого вашим текущим каталогом: du Подобно команде df, вы можете сделать du удобочитаемым: du –h Он отображает список содержимого текущего каталога и сколько места они используют. Вы можете упростить отображение с помощью опции –s: du –hs Это показывает, сколько места занимает текущий каталог. Чтобы указать каталог или файл, установите флажок, используя следующие параметры: du –hs /etc/kernel-img.conf du –hs /etc При использовании второй команды вы могли заметить сообщение об ошибке «Отказано в разрешении». Это означает, что текущий пользователь не имеет прав доступа к определенным каталогам. Используйте команду sudo для повышения ваших привилегий: sudo du –hs /etc Примечание. Если вы работаете с CentOS Linux, вам может потребоваться использовать команду su, чтобы переключиться на пользователя root для доступа к защищенным каталогам. Итоги Теперь вы должны понимать, как использовать команды df и du для проверки дискового пространства в вашей системе Linux. Помните, что для отображения полного списка параметров используйте df ––help или du ––help.
img
К Avaya Aura можно подключать не только «фирменные», но и сторонние SIP аппараты, а также SIP-софтфоны (Zoiper, MicroSIP, PhonerLite и так далее). Понятно, что полноценный функционал на таких аппаратах получить не получится, но совершать и принимать вызовы, а также использовать простые функции вполне возможно. В данной статье рассмотрим создание SIP-абонентов на релизах Avaya Aura 5.2 и 6.3 как на одних из самых распространенных. Создание SIP-абонента на релизе Avaya Aura 5.2 на базе медиа-сервера S8300 Подразумевается, что развернут не только Communication Manager (СМ), но и Session Manager (SES), на котором и будет происходить регистрация SIP-абонентов. На релизе 5.2 SIP-абоненты со стороны СМ только создаются как абоненты, но мониторинг их не осуществляется. Для СМ они всегда в состоянии Out of Service. Сначала на СМ создаем абонента. В GEDI может создавать абонентов очень легко и просто. Тут везде доступны подсказки, а выбор осуществляется с помощью мышки. Например, при нажатии на правую кнопку мыши в поле Type появится меню с выбором доступных типов подключаемых аппаратов. В консоли все тоже самое, только навигация осуществляется с клавиатуры и подсказки высвечиваются внизу экрана по нажатии F5. Вводим команду add station НОМЕР или NEXT. В случае NEXT будет выбран первый свободный номер из доступного номерного плана. Дальше будут приведены скриншоты с применением GEDI. Выбираем тип аппарата 9630SIP. В принципе можно выбрать любой тип аппарата, но аппараты 96хх серии являются более современными, а 9630 является средним аппаратом из этой серии. При этом поле Port будет автоматически выбран IP. Также лучше выставить IP SoftPhone? в y, что даст возможность использовать этот номер для регистрации софтфона. Поле Security Code НЕ ЗАПОЛНЯЕМ! Пароль для регистрации данного абонента будем вводить позже. Остальные настройки ничем не отличаются от настройки обычных абонентов. Остальные настройки ничем не отличаются от настройки обычных абонентов. Если необходимо настроить переадресацию при вызовах на этот номер, то настраиваем её на 3 странице: Unconditional – переадресация всех вызовов; Busy – переадресация при занятости абонента; No Reply – переадресация по неответу абонента; По каждому виду можно настраивать отдельно переадресацию для внутренних и внешних вызовов. Особенностью настройки SIP-абонента является необходимость указывать номер SIP-транка, созданного между СМ и SES. Дальше подключаемся через веб-браузер по адресу нашего CM и через Administration → SIP Enablemend Services попадаем в управление нашего SES. Далее Users → Add добавляем учетную запись для регистрации созданного ранее SIP-абонента. Важно: пароль для создаваемой учетной записи мы вводим именно на SES. В открывшейся форме заполняем: Primary Handle – указываем созданный ранее в СМ номер; User ID – указываем тот же номер; Password, Confirm Password – вводим и подтверждаем пароль для регистрации учетной записи; Host – указываем адрес SES, где будет регистрироваться абонент; First Name, Last Name – вводим имя и фамилию абонента; HostAdd Communication Manager Extension – ОБЯЗАТЕЛЬНО! отмечаем этот. Это позволит сразу перейти к настройке связанности регистрируемого аккаунта с номером в СМ; Далее нажимаем Add и Continue для сохранения настроек. После этого добавляем номер, созданный ранее на СМ для привязки созданного аккаунта к номеру. Далее нажимаем Add и Continue для сохранения настроек. Создание SIP-абонента на релизе Avaya Aura 6.3 Тут все немного проще. Настройка производится через System Manager. Он выполняет роль общей точки входа, объединяющей СМ и SES. Подключаемся по адресу System Manager. Далее User → User Management → Manage Users: На первой вкладке Identity вносим общую информацию о пользователе: заполняем поля, отмеченные звездочками. Имя и фамилию можно писать по-русски, они будут автоматически переведены в латиницу. Login name – вводится в формате НОМЕР@ДОМЕН (который заведен в System Manager заранее) Важно – пароль на этой странице не вводим! Переходим на вторую, основную вкладку Communication Profile, где и проводятся основные настройки. Именно тут и вводится пароль для регистрации абонента. Но вводить его нужно после заполнения всей необходимой информации, перед сохранением. Сначала добавляем Communication Address. Нажимаем New и заполняем форму: Type – автоматически подставится Avaya SIP; Handle – вводим номер абонента; Domain – выбираем из списка. Как правило он один и заведен в System Manager заранее; Далее заполняем 2 профайла: Session Manager Profile (данные, необходимые для регистрации); CM Endpoint Profile (данные, по которым будет создан абонент в Communication Manager); После заполнения нажимаем вверху страницы кнопку Commit для сохранения введенной информации. Для настроек самого абонента со стороны Communication Manager нажимаем View Endpoint. На вкладке General Options указываем номер SIP-транка, уровень ограничений (COR и COS) и так далее. На следующей вкладке Feature Options указываем необходимые функции данного абонента. В том числе отмечаем и IP SoftPhone, необходимую для использования SIP-софтфонов. После настройки сохраняем через кнопку Done. Теперь вводим и подтверждаем пароль для регистрации через этот профайл вверху страницы: Сохраняем и применяем настройки через кнопку Commit & Continue вверху страницы: На этом настройка SIP-абонента закончена. Теперь с использованием указанных данных можно зарегистрировать как сторонний SIP-аппарат, так и SIP-софтфон.
img
Linux поддерживает множество файловых систем, таких как ext4, ZFS, XFS, Btrfs, Reiser4 и другие. Различные типы файловых систем решают разные проблемы, и их использование зависит от приложения. Что такое файловая система Linux Почти каждый бит данных и программ, необходимых для загрузки системы Linux и поддержания ее работы, сохраняется в файловой системе. Например, сама операционная система, компиляторы, прикладные программы, разделяемые библиотеки, файлы конфигурации, файлы журналов, точки монтирования мультимедиа и т.д. Файловые системы работают в фоновом режиме. Как и остальная часть ядра операционной системы, они практически невидимы при повседневном использовании. Файловая система Linux обычно представляет собой встроенный уровень операционной системы Linux, используемый для управления данными хранилища. Он контролирует, как данные хранятся и извлекаются. Он управляет именем файла, размером файла, датой создания и другой информацией о файле. Файловая система ext4 В 1992 году была запущена файловая Extended File System или ext специально для операционной системы Linux. Она уходит своими корнями в операционную систему Minix. В 1993 году было выпущено обновление под названием Extended File System 2 или ext2, которое в течение многих лет было файловой системой по умолчанию во многих дистрибутивах Linux. К 2001 году ext2 была обновлена до ext3, которая ввела журналирование для защиты от повреждений в случае сбоев или сбоев питания. Ext4 была представлена в 2008 году и является файловой системой Linux по умолчанию с 2010 года. Она была разработана как прогрессивная версия файловой системы ext3 и преодолевает ряд ограничений в ext3. Она имеет значительные преимущества перед своим предшественником, такие как улучшенный дизайн, лучшая производительность, надежность и новые функции. В настоящее время ext4 является файловой системой по умолчанию в большинстве дистрибутивов Linux. Она может поддерживать файлы и файловые системы размером до 16 терабайт. Она также поддерживает неограниченное количество подкаталогов (файловая система ext3 поддерживает только до 32 000). Кроме того, ext4 обратно совместима с ext3 и ext2, что позволяет монтировать эти старые версии с драйвером ext4. Есть причина, по которой ext4 является выбором по умолчанию для большинства дистрибутивов Linux. Она опробована, протестирована, стабильна, отлично работает и широко поддерживается. Если вам нужна стабильность, ext4 - лучшая файловая система Linux для вас. Однако несмотря на все свои функции, ext4 не поддерживает прозрачное сжатие, прозрачное шифрование или дедупликацию данных. Файловая система XFS XFS - это высокомасштабируемая файловая система, разработанная Silicon Graphics и впервые развернутая в операционной системе IRIX на базе Unix в 1994 году. Это файловая система с журналированием которая отслеживает изменения в журнале перед фиксацией изменений в основной файловой системе. Преимущество заключается в гарантированной целостности файловой системы и ускоренном восстановлении в случае сбоев питания или сбоев системы. Первоначально XFS была создана для поддержки чрезвычайно больших файловых систем с размерами до 16 эксабайт и размером файлов до 8 эксабайт. Она имеет долгую историю работы на больших серверах и массивах хранения. Одной из примечательных особенностей XFS является гарантированная скорость ввода-вывода. Это позволяет приложениям зарезервировать пропускную способность. Файловая система рассчитывает доступную производительность и корректирует свою работу в соответствии с существующими резервированиями. XFS имеет репутацию системы, работающей в средах, требующих высокой производительности и масштабируемости, и поэтому регулярно оценивается как одна из самых производительных файловых систем в больших системах с корпоративными рабочими нагрузками. Сегодня XFS поддерживается большинством дистрибутивов Linux и теперь стала файловой системой по умолчанию в Red Hat Enterprise Linux, Oracle Linux, CentOS и многих других дистрибутивах. Лучшие варианты использования файловой системы XFS У вас большой сервер? У вас большие требования к хранилищу или у вас есть локальный медленный диск SATA? Если и ваш сервер, и ваше устройство хранения большие и нет необходимости уменьшать размер файловой системы, XFS, вероятно, будет лучшим выбором. XFS - отличная файловая система, которая хорошо масштабируется для больших серверов. Но даже с меньшими массивами хранения XFS работает очень хорошо, когда средние размеры файлов велики, например, размером в сотни мегабайт. Файловая система btrfs Btrfs - это файловая система Linux общего назначения нового поколения, которая предлагает уникальные функции, такие как расширенное интегрированное управление устройствами, масштабируемость и надежность. Он распространяется под лицензией GPL и открыт для внесения вклада кем угодно. Для файловой системы используются разные имена, в том числе «Butter FS», «B-tree FS» и «Better FS». Разработка Btrfs началась в Oracle в 2007 году. Она была объединена с основным ядром Linux в начале 2009 года и дебютировала в версии Linux 2.6.29. Btrfs не является преемником файловой системы ext4 по умолчанию, используемой в большинстве дистрибутивов Linux, но предлагает лучшую масштабируемость и надежность. Btrfs - это файловая система с копированием при записи (Copy-on-Write - CoW), предназначенная для устранения различных недостатков в текущих файловых системах Linux. Основное внимание уделяется отказоустойчивости, самовосстановлению и простоте администрирования. Btrfs может поддерживать до 16 эксбибайт раздела и файл того же размера. Если вас смущают цифры, все, что вам нужно знать, это то, что Btrfs может поддерживать до шестнадцати раз больше данных Ext4. Как работает Copy-on-Write и зачем вам это нужно В традиционной файловой системе при изменении файла данные считываются, изменяются, а затем записываются обратно в то же место. В файловой системе с копией при записи он считывает данные, изменяет их и записывает в новое место. Это предотвращает потерю данных во время транзакции чтения-изменения-записи, поскольку данные всегда находятся на диске. Поскольку вы не «перенаправляете» до тех пор, пока новый блок не будет полностью записан, если пропадет питание или выйдет из строя в середине записи, вы получите либо старый блок, либо новый блок, но не наполовину записанный поврежденный блокировать. Таким образом, вам не нужно проверять файловые системы при запуске, и вы снижаете риск повреждения данных. Вы можете сделать снимок файловой системы в любой момент, создав запись снимка в метаданных с текущим набором указателей. Это защищает старые блоки от последующего сбора мусора и позволяет файловой системе представить том в том виде, в котором он был во время моментального снимка. Другими словами, у вас есть возможность мгновенного отката. Вы даже можете клонировать этот том, чтобы сделать его доступным для записи на основе снимка. Особенности Btrfs Copy-on-Write и создание снепшотов - Сделайте инкрементное резервное копирование безболезненным даже из файловой системы в процессе работы или виртуальной машины (VM). Контрольные суммы на уровне файла - метаданные для каждого файла включают контрольную сумму, которая используется для обнаружения и исправления ошибок. Сжатие - файлы можно сжимать и распаковывать "на лету", что увеличивает скорость чтения. Автоматическая дефрагментация - файловые системы настраиваются фоновым потоком, пока они используются. Подтомы - файловые системы могут совместно использовать единый пул пространства вместо того, чтобы помещаться в свои собственные разделы. RAID - Btrfs выполняет свои собственные реализации RAID, поэтому LVM или mdadm не требуются для наличия RAID. В настоящее время поддерживаются RAID 0, 1 и 10. RAID 5 и 6 считаются нестабильными. Разделы необязательны - хотя Btrfs может работать с разделами, он может напрямую использовать необработанные устройства (/dev/<device>). Дедупликация данных - поддержка дедупликации данных ограничена; однако дедупликация со временем станет стандартной функцией Btrfs. Это позволяет Btrfs экономить место, сравнивая файлы через двоичные файлы diff. Хотя это правда, что Btrfs все еще считается экспериментальным и в настоящее время находится в активной разработке, время, когда Btrfs станет файловой системой по умолчанию для систем Linux, приближается. Некоторые дистрибутивы Linux уже начали переходить на него в своих текущих выпусках. Файловая система ZFS ZFS (Zettabyte File System) остается одной из наиболее технически продвинутых и полнофункциональных файловых систем с момента ее появления в октябре 2005 года. Это локальная файловая система (например, ext4) и менеджер логических томов (например, LVM), созданные Sun Microsystems. ZFS публиковалась под лицензией с открытым исходным кодом, пока Oracle не купила Sun Microsystems и не закрыла лицензию. Вы можете думать о ZFS как о диспетчере томов и как о RAID-массиве одновременно, что позволяет добавлять дополнительные диски к вашему тому ZFS, что позволяет одновременно добавить дополнительное пространство в вашу файловую систему. В дополнение к этому ZFS обладает некоторыми другими функциями, которых нет в традиционных RAID. ZFS сильно зависит от памяти, поэтому для запуска вам потребуется не менее 8 ГБ. На практике используйте столько, сколько можете получить в соответствии с вашим аппаратным обеспечением или бюджетом. ZFS обычно используется сборщиками данных, пользователями NAS и другими гиками, которые предпочитают полагаться на собственную избыточную систему хранения, а не на облако. Это отличная файловая система для управления несколькими дисками с данными, которая может соперничать с некоторыми из лучших конфигураций RAID. ZFS похожа на другие подходы к управлению хранилищем, но в некотором смысле радикально отличается. ZFS обычно не использует Linux Logical Volume Manager (LVM) или разделы диска, и обычно удобно удалять разделы и структуры LVM перед подготовкой носителя для zpool. Zpool - это аналог LVM. Zpool охватывает одно или несколько устройств хранения, а члены zpool могут быть нескольких различных типов. Основные элементы хранения - одиночные устройства, зеркала и raidz. Все эти элементы хранения называются vdevs. ZFS может обеспечить целостность хранилища намного лучше, чем любой RAID-контроллер, поскольку он досконально знает структуру файловой системы. Безопасность данных - важная особенность конструкции ZFS. Все блоки, записанные в zpool, тщательно проверяются контрольной суммой для обеспечения согласованности и правильности данных. Для использования на сервере, где вы хотите почти полностью исключить любую возможность потери данных и стабильности, вы можете изучить ZFS. Возможности ZFS Бесконечная масштабируемость. Что ж, технически она не бесконечна, но это 128-битная файловая система, способная управлять зеттабайтами (одним миллиардом терабайт) данных. Поэтому независимо от того, сколько у вас места на жестком диске, ZFS подойдет для управления им. Максимальная целостность. Все, что вы делаете внутри ZFS, использует контрольную сумму для обеспечения целостности файла. Вы можете быть уверены, что ваши файлы и их резервные копии не испытают скрытого повреждения данных. Кроме того, пока ZFS незаметно проверяет целостность ваших данных, она будет выполнять автоматическое восстановление в любое время. Объединение дисков. Создатели ZFS хотят, чтобы вы думали об этом как о том, как ваш компьютер использует оперативную память. Когда вам нужно больше памяти на вашем компьютере, вы вставляете другую карту, и все готово. Точно так же с ZFS, когда вам нужно больше места на жестком диске, вы вставляете другой жесткий диск, и все готово. Не нужно тратить время на разбиение на разделы, форматирование, инициализацию или что-то еще с вашими дисками. Если вам нужен «пул» хранилища большего размера, просто добавьте диски. RAID. ZFS поддерживает множество различных уровней RAID, обеспечивая при этом производительность, сравнимую с производительностью аппаратных RAID-контроллеров. Это позволяет сэкономить деньги, упростить настройку и получить доступ к превосходным уровням RAID, которые были улучшены в ZFS. Файловая система Reiser4 ReiserFS - это файловая система общего назначения с журналированием, первоначально разработанная и реализованная командой Namesys во главе с Хансом Райзером. Представленная в версии 2.4.1 ядра Linux, это была первая файловая система с журналированием, включенная в стандартное ядро. За исключением обновлений безопасности и исправлений критических ошибок, Namesys прекратила разработку ReiserFS. Reiser4 является преемницей файловой системы ReiserFS. Добавилось шифрование, улучшил производительность и многое другое. Reiser4 обеспечивает наиболее эффективное использование дискового пространства среди всех файловых систем во всех сценариях и рабочих нагрузках. ReiserFS предлагает преимущества перед другими файловыми системами, особенно когда дело доходит до обработки большого количества небольших файлов. Она поддерживает ведение журнала для быстрого восстановления в случае возникновения проблем. Структура файловой системы основана на деревьях. Кроме того, Reiser4 потребляет немного больше ресурсов ЦП, чем другие файловые системы. Reiser4 обладает уникальной способностью оптимизировать дисковое пространство, занимаемое небольшими файлами (менее одного блока). Они полностью хранятся в своем индексном дескрипторе, без выделения блоков в области данных. Помимо реализации традиционных функций файловой системы Linux, reiser4 предоставляет пользователям ряд дополнительных возможностей: прозрачное сжатие и шифрование файлов, полное ведение журнала данных, а также практически неограниченную (с помощью архитектуры подключаемых модулей) расширяемость. Однако в настоящее время нет поддержки прямого ввода-вывода (началась работа по реализации), квот и POSIX ACL.
ЗИМНИЕ СКИДКИ
40%
50%
60%
До конца акции: 30 дней 24 : 59 : 59